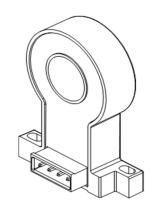


Current sensor

Model Number:

HR1V 50 H01


HR1V 100 H01

HR1V 200 H01

HR1V 300 H01

HR1V 400 H01

HR1V 500 H01

For the electronic measurement of current: DC, AC, pulsed..., with galvanic separation between the primary and the secondary circuits.

Features

- Open loop current sensor using the Hall effect
- ♦ Galvanic separation between primary and secondary
- ♦ Insulating plastic case recognized according to UL 94-V0
- ♦ No insertion loss
- ♦ Small size
- ♦ Standards:
 - IEC 60664-1:2020
 - IEC 61800-5-1:2022
 - IEC 62109-1:2010

Applications

- ♦ AC variable speed drives
- ♦ Uninterruptible Power Supplies (UPS)
- Static converters for DC motor drives
- Switch Mode Power Supplies (SMPS)
- ♦ Power supplies for welding applications
- ♦ Battery management
- ♦ Wind energy inverter

Safety

This sensor must be used according to IEC61800-5-1.

This sensor must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the following manufacture's operating instructions.

Caution, risk of electrical shock!

When operating the sensor, certain parts of the module can carry hazardous voltage (e.g., Primary busbar, power supply). Ignore this warning can lead to injury and/or cause serious damage.

This sensor is a built-in device, whose conducting parts must be inaccessible after installation. A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

Absolute maximum ratings(not operating)

Parameter	Symbol	Unit	Value
Supply voltage	V _c	V	± 18
Primary conductor temperature	T _B	$^{\circ}$	100
ESD rating, Human Body Model (HBM)	V _{ESD}	kV	4

X Stresses above these ratings may cause permanent damage.

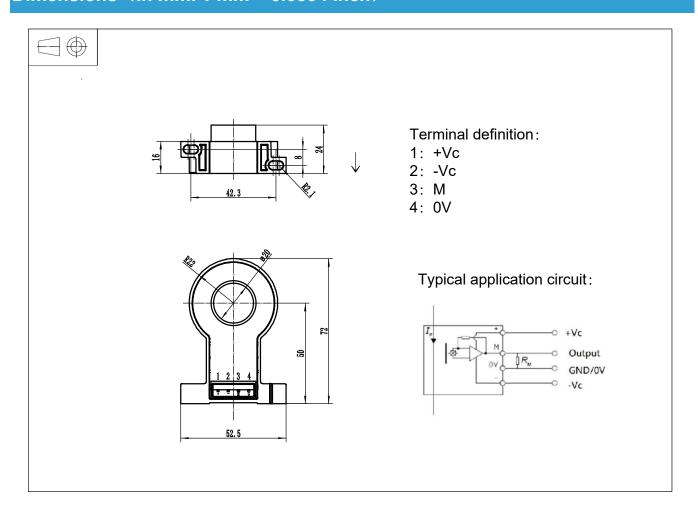
Environmental and mechanical characteristics

Parameter	Symbol	Unit	Min	Тур	Max	Comment
Ambient operating temperature	T _A	$^{\circ}$ C	-40		85	
Ambient storge temperature	T _s	$^{\circ}\!\mathbb{C}$	-40		125	
Mass	т	g		44		
Standards	EN 50178, IEC 61010-1, UL 508C					

Insulation coordination

Parameter	Symbol	Unit	Value	Comment
RmsvoltageforACinsulationtest @ 50Hz,1min	V_{d}	kV	2.5	
Plastic case	-	-	UL94-V0	
Comparative traking index	CTI	PLC	3	
Application example	-	-	150V	Reinforced insulation,according to IEC 61800-5-1, IEC 62109-1CATⅢ, PD2
Application example	-	-	300V	Basic insulation,according to IEC 61800-5-1, IEC 62109-1CATⅢ, PD2

^{*} Exposure to absolute maximum ratings for extended periods may degrade reliability.


Electrical data

% With T_A = 25°C, V_C = ±15V, R_L = 10k Ω ,otherwise unless noted.

Parameter	Symbol	Unit	Min	Тур	Max	Comment
Primary nominal rms current	I _{PN}	А	-50		50	HR1V 50 H01
			-100		100	HR1V 100 H01
			-200		200	HR1V 200 H01
			-300		300	HR1V 300 H01
			-400		400	HR1V 400 H01
			-500		500	HR1V 500 H01
Primary current, measuring range	I _{РМ}	А	-100		100	HR1V 50 H01
			-200		200	HR1V 100 H01
			-400		400	HR1V 200 H01
Timary current, measuring range			-600		600	HR1V 300 H01
			-800		800	HR1V 400 H01
			-900		900	HR1V 500 H01
Supply voltage	V c	٧	± 12		± 15	@ 5%
Current consumption	<i>I</i> c	mA		27		
Load resistance	R_{L}	kΩ	10			
Output voltage (Analog)@ I _{PN}	V out	٧	± 4.950	± 5.000	± 5.050	
Electrical offset voltage	V _{OE}	mV	-20		20	
Temperature coefficient of V_{OE}	TCV _{0E}	mV/K	-1.5		1.5	HR1V 50 H01
			-1		1	HR1V 100-500 H01
	G_{th}	mV/A		100.0		HR1V 50 H01
				50.0		HR1V 100 H01
Theoretical sensitivity				25.0		HR1V 200 H01
				16.67		HR1V 300 H01
				12.5		HR1V 400 H01
				10.0		HR1V 500 H01
Sensitivity error	$\mathcal{E}_{\scriptscriptstyle{ ext{G}}}$	%	-0.5		0.5	Exclusive of V_{0E}
Temperature of G	TCG	mV/K	-1.5		1.5	HR1V 50 H01
			-1		1	HR1V 100-500 H01
Linearity error 0/ _{PN}	$\mathcal{E}_{ extsf{L}}$	% of I _{PN}	-1		1	Exclusive of V_{0E}
Hysteresis offset voltage @ / P =0 after 1 × / PN	V _{OM}	mV	-20		20	
Response time@ 90% of I _{PN}	t r	μs			5	
Frequency bandwidth(-1dB)	BW	kHz	20		_	

Dimensions (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

♦ General tolerance

±1mm

Connection of secondary

JK2EDG-5.08-4P

 \diamond

Primary hole

Ф20mm

♦ Sensor

2pc Φ4.0 mm through hole 2pc M4 metal screws

Recommended fastening torque

2.1 N·m (±10%)

Remarks

- v_{OUT} and I_P are in the same direction, when I_P flows in the direction of arrow.
- ♦ Temperature of the primary conductor should not exceed 100°C.
- Dynamic performances (di/dt and response time)are best with a single bar completely filling the primary hole.

This is a standard model. For different applications (measurement, secondary connections...), please contact CHIPSENSE.

Doc Ref.: 1800 000 00982 01/15/2025 www.chipsense.net